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Abstract
ChatGPT and other large language models (LLM) interfaces
offer powerful and flexible capabilities in tasks including
question-answering and chat-based support. These models
can already access global context, through web searches and
public data, or personal context, through augmentation with
private data and local storage. However, securely address-
ing community-level challenges and collective action prob-
lems necessitates unique privacy, security, and custodianship
solutions that safely bring together data from multiple par-
ties and stakeholders. This paper presents a method that en-
ables communities or organizations to securely aggregate data
for LLM-based question-answering, aimed at extracting valu-
able local insights and customizing model responses to meet
community-specific requirements while being inherently au-
ditable. To this end, we leverage a combination of traditional
privacy transformations, LLM-enabled privacy transforma-
tions, trusted execution environments, custodial control of
data, and consent-based privacy choices to maximize commu-
nity data security while maintaining the flexibility required for
collective question-answering. This innovative method facili-
tates collaborative problem-solving using shared community
data.

1 Introduction

The rapid proliferation of large language models (LLMs) such
as GPT-3.5, GPT-4 [48], and LLaMA [63] as well as their
consumer-facing interfaces like ChatGPT have captured our
collective imagination. The flexibility and versatility of these
technologies make them well-suited to perform a variety of
tasks involving human interaction. Although these models
are trained on a massive range of data sources across the
web, this data is not up to date. The advent of knowledge
retrieval augmentation (such as WebGPT [45] or RAG [36]),

promises to allow LLMs to become question-answer tools for
specific information available on the public internet. These
models could also become powerful consumer or enterprise
tools if they are augmented with personal or organizational
data (e.g., health, financial, and family information), such as
demonstrated by the Microsoft 365 Copilot. However, any
one person or organization has access to limited data and
tremendous potential can be unlocked if communities can
securely aggregate and search through their data.

The power of community data sharing is increasingly be-
ing recognized as a vital component in tackling complex so-
cietal challenges and enhancing overall welfare. This has
led to the emergence of innovative data governance models,
such as data cooperatives [25], which promote the idea that
individuals can collectively control and benefit from their
data. The central role of data in the new economy under-
scores the importance of users taking collective control of
their data to reap the rewards of this valuable resource [52]. A
human-centered approach to data architectures, as described
in "Trusted Data" [26], seeks to address data privacy, security,
ownership, and trust issues by enabling insights to be ex-
tracted without revealing the underlying data. This approach,
combined with breaking down the data silos of big tech mo-
nopolies, has the potential to democratize data sharing for
community well-being [40, 66].

There has been a great deal of research in the social sci-
ences about what a human community is [6, 54], but we draw
on a broad definition where a community is a group of peo-
ple with shared relationships and the possibility or will to
create shared institutional structures (which are needed to
deploy our proposed system). These communities could com-
prise physically co-located individuals, physically distributed
groups with a common enterprise (such as local businesses
or separate units within a business), or groups of individu-
als with shared interests or challenges (such as a minority
group with shared cultural heritage or a group with a common
rare disease). In each of these contexts, there is value to the
unique insights that can be harnessed through the aggregation
and analysis of community data using LLM-based question-
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answering. However, much of this data is sensitive and so any
aggregation must also preserve individuals’ and communities’
privacy.

For instance, physical communities could use this method
to share data on traffic, experiences with local businesses,
or food inequality to help with collective coordination and
planning. This information could be used to design better
urban environments, allocate city resources more efficiently,
or develop more effective community programs. Businesses
could benefit from this approach to securely aggregate data
across business units or partner companies to help design busi-
ness strategies, learn from past client experiences, or co-work
on compatible application programming interfaces. Minority
communities could share experiences and personal insights
to facilitate more inclusive chat-based mental health support
systems or to extract insights that allow for better program
development to identify and address the community’s most
pressing needs. The proposed method is flexible enough to
meet the specific data-sharing needs of various communities
while maintaining data security and privacy. In general, the
goal is not only to enable community data to be aggregated
for analysis but also to align the outputs of the LLM with the
interests and experiences of the community.

As efforts to adapt LLMs to meet users’ specific needs bur-
geon, we identify three primary state-of-the-art strategies that
cater to community needs: (1) Prompt engineering system
messages that are tailored to the community; (2) Fine-tuning
using existing relevant data or reinforcement learning from
human feedback (RLHF [49]) using members of a community
to answer questions in a way that better suits the needs of
the community; (3) Augmenting outputs with data to provide
relevant experiential and contextual answers by drawing infor-
mation from real community data and personal stories. Each
of these approaches draws on community input and deliber-
ation to optimally address the needs of the community. We
omit a broader discussion of fine-tuning for specific tasks,
as fine-tuning requires significant computational resources
that many communities lack. While the use of community-
powered RLHF is powerful, we leave this as future work as
it would also require costly computational infrastructure and
significant hands-on work by members of a community to
provide human feedback for training. Further, while design-
ing a robust and equitable system prompt that suits the needs
of a community is essential, we take this as a given for the
rest of the body of this work, reserving examination of delib-
erative system prompt selection for the discussion. Instead,
we will focus on approach (3), which is uniquely suited to
enable secure use of community data without requiring addi-
tional investment to augment model responses or significant
investment into computational resources.

2 System architecture

The objective of the proposed system is to allows users to
answer questions based on their own private data and sensitive
community data. For example, an individual with a medical
issue (personal private data) querying a set of detailed re-
views (community data) to find the best local specialist. The
proposed system will facilitate question-answering while safe-
guarding both the community data and the user’s private data.
We introduce a system design that ensures the secure trans-
mission of user data to an encrypted database through the im-
plementation of a trusted execution environment (TEE). The
TEE not only guarantees secure data handling but also permits
the execution of specific operations on the data. Our design
encompasses two principal operations: privacy controls and
secure information retrieval. Privacy controls, consisting of
both statistical and language model-based privacy transforma-
tions, enable community members to safely modify data for
the purpose of discovering insights while preserving privacy.
This procedure can also facilitates the auditing of the data
privacy trail. Moreover, the TEE provides question-answering
capabilities for community members by employing language
models that extract insights from both privacy-protected and
public data using information retrieval methods. In this ap-
proach, an embedding-based textual search is conducted on
the privatized community data, allowing LLM context win-
dow to be automatically filled with relevant community data
to facilitate contextual insights.

This design is based on the core principles that data and
compute should be hosted and controlled locally where possi-
ble, that community data should be self-governed and access
granted only with consent, and that privacy (both from the out-
side world and within the community) should be controllable
and guaranteed to the strongest possible level.

To allow individuals in the community to contribute data
and then query aggregated data resources at a later date, a
small upfront investment by the community is required to es-
tablish a server that deploys a TEE and an encrypted database,
which will be used to protect community data. These execu-
tion environments will externalize a public encryption key
used to encrypt the flow of user data. The community may
decide, at any time, to dissolve the infrastructure and delete all
shared data. The community may also decide to allow admin-
istrative access through which the TEE can delete or extract
raw data. To ensure that this mechanism is used responsibly,
and to avoid potential security breaches, the community may
designate a committee or a board to vote on approving any
use of the administrative access. This can be handled by a
threshold signing protocol [33], which requires a majority of
voters to approve such action.

To summarize, the system leverages six key privacy and
security elements:

1. A TEE is used to execute the custodial operations of the
data and queries.
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2. Data remains encrypted once it has left the hands of
an individual using the public encryption key provided
by the TEE. Only the TEE, which cannot be directly
accessed by any user of the server (not even with root
access), ever sees the corresponding decryption key.

3. Private data has a de-identification step applied to it
(using LLMs or traditional methods).

4. Non-private and de-identified data are made available
to the LLM through secure information-retrieval in a
key-controlled database.

5. User queries and prompts (with data) are encrypted and
sent to the TEE.

6. (Optional) All data is kept local through the execution
of the LLM on the TEE (subject to computational limi-
tations, see subsection 2.3).

In this system, three sets of data are processed. The first is
a user query to the system, X , which will contain a prompt
Xprompt and optionally user-specific data, Xdata. The user in-
put may take a variety of forms and it may either interact with
existing data or be placed directly into a text-based query.
This user query may require data from the community to
answer. Community data is broken into two types, private
community data with sensitive information, Cprivate, and open
community data, Copen which contains data that anyone in
the community may access but which is not available to the
general public. For example, Copen may be proprietary en-
terprise data or shared community records. We denote the
community data as a pool, where the pooled data is made up
of i individual records, Cprivate

i , each of which may require
specific operations to ensure privacy. The items in the pooled
data will be uploaded asynchronously over time, resulting in
a constantly updating pool of community data, C.

The TEE is a secure area in a processor that guarantees the
confidentiality and integrity of the code and data executed
within it [42]. When combined with access control mecha-
nisms, a TEE can provide a highly secure solution for protect-
ing data uploaded and stored in a database. When a TEE is
initialized, it generates a public-private key pair. When com-
munity members upload their data, they can securely encrypt
it using the public key of the TEE, pk, before uploading it to
the database via the TEE, and only the TEE, which holds the
private key, can decrypt the data. If only the TEE has access
to a set of tables within the database, then individual records
need not be encrypted (as the whole database is) allowing
for an efficient search of records to augment responses. More
importantly, loading complete tables into the enclave prevents
deanonymization attacks associated with observing memory
access patterns. For example, encrypted data in which each
item is encrypted separately would still leak how often a
specific item is accessed, which under certain circumstances
could have devastating results. Larger tables that do not fit

in the enclave’s memory can leverage an Oblivious RAM
(ORAM) scheme [29], but we leave this for future work.
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Figure 1: A diagram of how private queries can be com-
bined with personal data to allow for large language model
examination of shared community data that has been privacy-
preserved. (1) Community data is encrypted at upload time
into a secure database using the trusted execution environ-
ment’s (TEE) public key (pk). (2) The securely uploaded
private data is transformed into a privacy-persevered inter-
mediate representation that can be inspected and audited. (3)
Private user queries can be sent to the TEE where the prompt
engine can combine queries with community data using infor-
mation retrieval (4) to send to a pre-trained language model
hosted externally via API or within local hosting for security
enhancements (computational resources permitting).

Similarly to the community data upload process, a user
can encrypt their prompt, X prompt , and associated data, Xdata,
for upload to the TEE. While steps are taken throughout
the process to prevent the leaking of community data, this
becomes increasingly hard to ensure if outsiders are able to
query the TEE API. Many solutions exist for this challenge,
from simple user account management to special identity
control or cryptographic wallet signing. These approaches
can help to prevent attacks via information leakage through
repeated queries (which has been shown to be a threat in
many privacy contexts [47]) and distributed denial-of-service
(DDoS) attacks on limited local commute resources.

2.1 LLM querying

Research on task-specific NLP has focused on fine tuning,
but, with the rise of LLMs, the focus has shifted on the role
of augmenting models using retrieval from external knowl-
edge sources. Owing to their remarkable capabilities and pre-
training on large corpora, LLMs are extremely powerful zero-
shot and few-shot learners [4,10,48,61]. However, the offline
training of these models results in a lack of up-to-date informa-
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tion. Advances in retrieval-augmented language models have
allowed LLMs to draw on external knowledge [24, 28, 36, 69].
These augmented models can draw on up-to-date informa-
tion from the web through search engines [7, 35, 45], code
repositories [50, 68, 70], or private documents [2, 27, 30].

These retrieval models come in a variety of forms from
document-search-based approaches [2,31,62] to more sophis-
ticated approaches such as iterative prompts revising [51].
While many of these approaches rely on sophisticated tech-
niques for augmentation, recent work has found success in
simply prepending the retrieval results to the LLM query [55,
58]. This simple approach is easy to use and leverages tradi-
tional, efficient, and reproducible information retrieval sys-
tems such as Pyserini [38], LlamaIndex, and LangChain [5].
The simplicity of these approaches and their ability to effi-
ciently run on a TEE makes them particularly well suited for
the context of our proposal.

Building on the work in RALM [55], where a user creates
a query, the TEE information reveal system performs a search
that retrieves one or more documents or document summaries
from the community corpus C, and conditions the LLM pre-
dictions on these documents by concatenating the retrieved
documents within the LLMs input prior to the query prompt.

2.2 Information privacy controls

While much of the secure infrastructure proposed here is
focused on keeping data safely within the community, care
must be taken in how data is shared between community
members. Where community members declare data open to
the community, Copen, no additional work needs to be done,
and the data can be indexed and searched directly by the
information reveal system. For sensitive data that is uploaded,
Cprivate, a privacy-preserving operation must be performed on
the data to produce new data artifacts Csa f e. In this discussion,
we categorize data at the community level into two types:
quantitative data and natural language data.

2.2.1 Privacy preservation in natural language

Over the last several years, a variety of approaches have
been proposed to leverage deep learning to create privacy-
preserving text representations and altered textual data to pro-
tect against identification or private attribute inferences [12,
17–19, 37, 44] with applications ranging from preserving pri-
vacy in emails [16] to medical notes [1, 15].

Prior work leverages a variety of approaches from differ-
ential privacy in training to an adversarial approach to pri-
vacy [13]. We anticipate that with the increased capabilities
of new models such as GPT-4 [48] even more effective ap-
proaches will emerge to provide privacy while still outputting
intermediate representations after the privacy-preserving step.
In Figure 2 we demonstrate an example of using state-of-the-
art LLM models to perform the privacy-preserving step.

Given the recent release of GPT-4, these approaches re-
main largely untested against state-of-the-art benchmarks. We
perform a qualitative experiment to identify the current ca-
pacity of LLMs to perform privacy preservation, outlined in
??. These experiments leverage an instructive system prompt
to convert the sensitive text into a privacy-preserved text, as
demonstrated in Figure 2. Protecting privacy, in this case, is
particularly challenging if an actor has contextual knowledge
about the community and its members. In such cases even dei-
dentified data could be de-anonymized [46, 53]. Future work
is needed to understand under what conditions this model can
protect privacy.

While the privacy-preserving quality of this proposed ap-
proach is not yet fully studied, the approach has two impor-
tant advantages. First, it uses the existing technology stack
to prompt the LLM locally or via the API, reducing the soft-
ware overhead. Second, it creates an intermediate text rep-
resentation that should be de-identified. In cases where the
community members believe data is sensitive enough to war-
rant checking, the TEE can be built to return the individual
records to the user after de-identification. This would allow
the user to confirm that their information has been scrubbed
and choose to delete it if not thus providing auditable pri-
vacy. Self-custodial control over data privacy is a key design
element that needs to be included in such a system.

2.2.2 Privacy transformations on quantitative data

While many valuable insights are only available through the
analysis of natural language text, there is also a wide array of
community questions that can be addressed purely through,
or in combination with, quantitative data. Various related
projects have used community data to help members make
better decisions [11, 67] including specific interfaces for con-
texts such as migration choices [39] or urban health inequali-
ties [14].

In many cases, these data-based support systems use pub-
licly available data provided by governments or institutions.
Governments around the world release a variety of statisti-
cal and raw data that is useful in decision-making. This data
can include zoning data for urban planning, housing statistics
for understanding the local real estate market, healthcare out-
comes for various communities and demographics to optimize
public health services, and educational performance data to
guide policies and resource allocation in the education sector.

In cases where governments cannot release raw records
due to privacy concerns, many have attempted to do so with
privacy-enabling technologies, such as differential privacy in
US census results [22], the Canadian Open Data initiative,
which employs data anonymization techniques to protect indi-
vidual identities while providing valuable datasets for public
use, and others (e.g. [56]).

Quantitative data does not need to just come from govern-
ments. Individuals can extract valuable insights from privately
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Figure 2: An example of using GPT-4 with a focused system prompt to convert identifiable text into deidentified text that still
contains the essential information. While identifying names have been removed (including the name of the clinic which may
have been useful information), threats involving an actor with knowledge of the relevant context remain.

sharing personal quantitative data [59]. For example, citizen
science tasks often involve individuals sharing data on local
environmental conditions, such as air quality, water quality,
or biodiversity, to support scientific research and conserva-
tion efforts [20]. To enable privacy on this data, there exists
a large literature on privacy-preserving and anonymization
techniques [21, 41], where privacy budgets and trade-offs for
specific contexts need to be considered.

Furthering the importance of these tools, the European
Union’s General Data Protection Regulation (GDPR) en-
courages the use of privacy-preserving techniques like k-
anonymization [57] and pseudonymization when sharing per-
sonal data. These shared contributions help build a richer
understanding of the community and its needs while respect-
ing individual privacy.

2.3 Local LLM Inference
Despite the previously mentioned design elements ensuring
secure data uploading, limited access, and privacy preserva-
tion, there remains a critical security aspect to address. At
present, the largest and most powerful language models, such
as GPT-4, are accessible only through an API. This means
that uploading sensitive data necessitates sending commu-
nity data to an external service, posing challenges in terms
of privacy, security, and data compliance, particularly when
sensitive records must be stored locally.

One potential solution is to host these LLM tools locally.
Considerable efforts are being made to enable smaller ver-
sions of these models (such as LLaMA-7B [63] or it’s fine-
tuned derivatives, Alpaca [60], Vicuna [9], and Koala [23]) to
run efficiently on local devices. Projects like llama.cpp1 aim
to port open models to operate on local consumer-level hard-
ware. Additionally, approaches may draw from the principles
of TinyML to enable models to run on edge computing [3].
Eventually, if inference efficiency improvements are substan-
tial enough, these models could potentially operate entirely

1https://github.com/ggerganov/llama.cpp

within the TEE, or in a hybrid fashion with the TEE [64],
significantly enhancing security. However, given the current
state of the art, high-speed and low-memory methods for run-
ning LLMs do not achieve the same level of flexibility and
robust performance as their large server-hosted counterparts.

Even in situations where full chat-based LLM answering
cannot be performed locally, we may prioritize the privacy
aspect of inference. This is crucial since enabling local privacy
controls for all data ensures that no private data ever leaves
community servers. To this end, smaller LLMs running locally
might be sufficient for providing privacy controls. If these are
unavailable, the vast array of traditional literature on NLP-
based privacy controls, as outlined in subsubsection 2.2.1, is
appropriate for running either directly in the TEE or through
locally hosted compute services, such as external GPUs or
community compute services.

While much of the system is designed for low-cost local de-
ployment to maximize usability for small communities, larger
communities (such as corporations or government agencies)
might prioritize privacy and security over cost. In these in-
stances, the threat model of the LLM may involve sending any
data to an external company server, making the use of within-
company cloud computing a sensible and secure alternative.
In such cases, open-source LLMs are highly suitable for run-
ning on company servers and can even be further fine-tuned
to align with company values, as demonstrated in RLHF [49].

3 Discussion

While the proposed system design offers protection against
several threat models, it is unable to guard against others. The
following discussion will elaborate on the system’s strengths
and weaknesses in terms of security and compliance, as well
as explore the potential socio-technical challenges and the
influence of system prompts on long-term behaviors.

One of the primary concerns with the system design is
the possibility of bad data insertion, whereby malicious or
incorrect data may be introduced into the system. This is-
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sue is particularly concerning when community members
intentionally or inadvertently introduce false or destructive
content into the model. Such content can significantly reduce
the system’s performance, compromise its accuracy, and po-
tentially harm other members of the community. As a result,
the effectiveness and reliability of the system can be severely
undermined. To mitigate this risk, it is essential to implement
robust data validation and moderation mechanisms to detect
and filter out malicious or erroneous inputs. This may involve
incorporating automated content analysis, user reputation sys-
tems, and manual moderation processes to ensure that the data
fed into the system is accurate, reliable, and beneficial to the
community as a whole. Additionally, fostering a culture of
trust, responsibility, and accountability within the community
can help minimize the likelihood of bad data insertion and
encourage members to contribute positively to the system’s
success.

In terms of compliance, the system design adheres to the
GDPR, CCPA, and the proposed EU AI Act [34]. However,
the evolving nature of these regulatory frameworks leaves
a significant number of legal questions unanswered. It does,
however, maintain the right to be forgotten, as community
members give consent for data to be used, and can revoke
that consent by removing the data (and any of its privacy-
preserving transformations) from the community data pool.

Socio-technical challenges may arise from this system de-
sign, particularly in terms of reinforcing community group-
think and polarization [32]. By exclusively using data from
a specific community, the system may inadvertently amplify
existing biases, leading to further polarization within and be-
tween communities. The risk of driving echo chambers further
apart and intensifying divisions between communities should
not be overlooked. To address these challenges, it is crucial
to develop strategies that encourage diverse perspectives, pro-
mote constructive dialogue, and counteract the potential for
negative consequences resulting from the system’s design.
Indeed, the EU AI Act is deeply concerned about the role
of subliminal persuasion from models, and it is still unclear
where liability or risks emerge when acting on the outputs
from these models.

An essential aspect to consider regarding the long-term im-
pact of these systems on communities is the choice of system
prompts. The prompts can wield a considerable influence on
the model’s behavior, dictating what it will and will not do.
Ensuring that system prompts encourage positive behavior
and productive interactions is crucial for the successful im-
plementation and adoption of these tools within communities.
This may involve designing prompts that foster empathy, un-
derstanding, and open-mindedness, as well as incorporating
feedback from diverse stakeholders to ensure a broad range of
perspectives is represented. Moreover, it is important to regu-
larly evaluate and adjust the prompts to optimize the system’s
performance and adapt to the evolving needs and dynamics
of the communities it serves.

Finally, it’s important to turn our attention to the use of
TEEs as a security control mechanism within the system
design. TEEs provide additional layers of security by safe-
guarding the executed code, runtime state, and memory dur-
ing operation. In situations where lower security controls are
deemed sufficient, TEEs can be entirely removed and replaced
with an unsecured runtime on a cloud provider or local server,
offering advantages in speed, auditability, and flexibility. Con-
versely, if a community is concerned about centralized control
of data management and computation, they could opt for a sys-
tem that distributes the data across a network of TEEs (e.g.,
as in the case with Secret Network2, a privacy-preserving
Blockchain). Similarly, as TEEs are known to be susceptible
to potential side-channel attacks [8, 65], a community could
leverage secure multiparty computation (MPC) to manage
the system [43, 71]. MPC distributes the control and process-
ing of data across multiple parties, ensuring no single entity
has complete control over the information. However, this ap-
proach comes with trade-offs, as it may significantly reduce
system speed and usability. It also requires assuming that the
different parties do not collude — an assumption that may
be difficult to make in practice. Ultimately, the choice of se-
curity mechanisms should be tailored to the specific needs
and concerns of each community, balancing the desired level
of privacy and protection with the trade-offs in performance
and ease of use. By carefully considering these factors, com-
munities can implement a system that offers robust security
while maintaining functionality and accessibility for all its
members.

4 Conclusion

In conclusion, this paper has presented a novel method for
securely aggregating data from multiple parties and stakehold-
ers within a community, enabling the utilization of large lan-
guage models (LLMs) like ChatGPT for question-answering
tasks that address community-level challenges and collective
action problems. By incorporating a range of privacy and
security measures, such as traditional privacy transformations,
LLM-enabled privacy transformations, trusted execution envi-
ronments, custodial control of data, and consent-based privacy
choices, the proposed system maximizes community data se-
curity while offering a flexible tool for community-specific
insights and tailored model responses.

The implications of this research extend beyond the imme-
diate application of LLMs in question-answering tasks, as it
demonstrates the potential for harnessing the power of these
models in a secure and privacy-preserving manner to address
a wide array of community-oriented problems. Furthermore,
the methods presented in this paper can serve as a foundation
for future research, exploring novel ways to enhance data
security, privacy, and usability in LLM applications while fos-

2http://docs.scrt.network/
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tering collaborative problem-solving using shared community
data.

As LLMs continue to advance and gain prominence, it is
essential to develop robust, secure, and privacy-preserving
mechanisms that cater to the unique needs of various com-
munities. By bridging the gap between individual and global
contexts, this research contributes to the ongoing efforts to
make LLMs an invaluable tool for addressing the complex,
diverse, and dynamic challenges faced by communities world-
wide.
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